Logo Search packages:      
Sourcecode: x-loader version File versions  Download package

omap3530beagle.c

/*
 * (C) Copyright 2006
 * Texas Instruments, <www.ti.com>
 * Jian Zhang <jzhang@ti.com>
 * Richard Woodruff <r-woodruff2@ti.com>
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <command.h>
#include <part.h>
#include <fat.h>
#include <asm/arch/cpu.h>
#include <asm/arch/bits.h>
#include <asm/arch/mux.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/sys_info.h>
#include <asm/arch/clocks.h>
#include <asm/arch/mem.h>

/* Used to index into DPLL parameter tables */
struct dpll_param {
      unsigned int m;
      unsigned int n;
      unsigned int fsel;
      unsigned int m2;
};

typedef struct dpll_param dpll_param;

/* Following functions are exported from lowlevel_init.S */
extern dpll_param *get_mpu_dpll_param();
extern dpll_param *get_iva_dpll_param();
extern dpll_param *get_core_dpll_param();
extern dpll_param *get_per_dpll_param();

#define __raw_readl(a)        (*(volatile unsigned int *)(a))
#define __raw_writel(v, a)    (*(volatile unsigned int *)(a) = (v))
#define __raw_readw(a)        (*(volatile unsigned short *)(a))
#define __raw_writew(v, a)    (*(volatile unsigned short *)(a) = (v))

/*******************************************************
 * Routine: delay
 * Description: spinning delay to use before udelay works
 ******************************************************/
static inline void delay(unsigned long loops)
{
      __asm__ volatile ("1:\n" "subs %0, %1, #1\n"
                    "bne 1b":"=r" (loops):"0"(loops));
}

void udelay (unsigned long usecs) {
      delay(usecs);
}

/*****************************************
 * Routine: board_init
 * Description: Early hardware init.
 *****************************************/
int board_init(void)
{
      return 0;
}

/*************************************************************
 *  get_device_type(): tell if GP/HS/EMU/TST
 *************************************************************/
u32 get_device_type(void)
{
      int mode;
      mode = __raw_readl(CONTROL_STATUS) & (DEVICE_MASK);
      return mode >>= 8;
}

/************************************************
 * get_sysboot_value(void) - return SYS_BOOT[4:0]
 ************************************************/
u32 get_sysboot_value(void)
{
      int mode;
      mode = __raw_readl(CONTROL_STATUS) & (SYSBOOT_MASK);
      return mode;
}

/*************************************************************
 * Routine: get_mem_type(void) - returns the kind of memory connected
 * to GPMC that we are trying to boot form. Uses SYS BOOT settings.
 *************************************************************/
u32 get_mem_type(void)
{
      u32   mem_type = get_sysboot_value();
      switch (mem_type) {
      case 0:
      case 2:
      case 4:
      case 16:
      case 22:
            return GPMC_ONENAND;

      case 1:
      case 12:
      case 15:
      case 21:
      case 27:
            return GPMC_NAND;

      case 3:
      case 6:
            return MMC_ONENAND;

      case 8:
      case 11:
      case 14:
      case 20:
      case 26:
            return GPMC_MDOC;

      case 17:
      case 18:
      case 24:
            return MMC_NAND;

      case 7:
      case 10:
      case 13:
      case 19:
      case 25:
      default:
            return GPMC_NOR;
      }
}

/******************************************
 * get_cpu_rev(void) - extract version info
 ******************************************/
u32 get_cpu_rev(void)
{
      u32 cpuid = 0;
      /* On ES1.0 the IDCODE register is not exposed on L4
       * so using CPU ID to differentiate
       * between ES2.0 and ES1.0.
       */
      __asm__ __volatile__("mrc p15, 0, %0, c0, c0, 0":"=r" (cpuid));
      if ((cpuid  & 0xf) == 0x0)
            return CPU_3430_ES1;
      else
            return CPU_3430_ES2;

}

/******************************************
 * cpu_is_3410(void) - returns true for 3410
 ******************************************/
u32 cpu_is_3410(void)
{
      int status;
      if (get_cpu_rev() < CPU_3430_ES2) {
            return 0;
      } else {
            /* read scalability status and return 1 for 3410*/
            status = __raw_readl(CONTROL_SCALABLE_OMAP_STATUS);
            /* Check whether MPU frequency is set to 266 MHz which
             * is nominal for 3410. If yes return true else false
             */
            if (((status >> 8) & 0x3) == 0x2)
                  return 1;
            else
                  return 0;
      }
}

/*****************************************************************
 * sr32 - clear & set a value in a bit range for a 32 bit address
 *****************************************************************/
void sr32(u32 addr, u32 start_bit, u32 num_bits, u32 value)
{
      u32 tmp, msk = 0;
      msk = 1 << num_bits;
      --msk;
      tmp = __raw_readl(addr) & ~(msk << start_bit);
      tmp |= value << start_bit;
      __raw_writel(tmp, addr);
}

/*********************************************************************
 * wait_on_value() - common routine to allow waiting for changes in
 *   volatile regs.
 *********************************************************************/
u32 wait_on_value(u32 read_bit_mask, u32 match_value, u32 read_addr, u32 bound)
{
      u32 i = 0, val;
      do {
            ++i;
            val = __raw_readl(read_addr) & read_bit_mask;
            if (val == match_value)
                  return 1;
            if (i == bound)
                  return 0;
      } while (1);
}

#ifdef CFG_3430SDRAM_DDR
/*********************************************************************
 * config_3430sdram_ddr() - Init DDR on 3430SDP dev board.
 *********************************************************************/
void config_3430sdram_ddr(void)
{
      /* reset sdrc controller */
      __raw_writel(SOFTRESET, SDRC_SYSCONFIG);
      wait_on_value(BIT0, BIT0, SDRC_STATUS, 12000000);
      __raw_writel(0, SDRC_SYSCONFIG);

      /* setup sdrc to ball mux */
      __raw_writel(SDP_SDRC_SHARING, SDRC_SHARING);

      /* set mdcfg */
      __raw_writel(SDP_SDRC_MDCFG_0_DDR, SDRC_MCFG_0);

      /* set timing */
      if ((get_mem_type() == GPMC_ONENAND) || (get_mem_type() == MMC_ONENAND)) {
            __raw_writel(INFINEON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0);
            __raw_writel(INFINEON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0);
      }
      if ((get_mem_type() == GPMC_NAND) || (get_mem_type() == MMC_NAND)) {
            __raw_writel(MICRON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0);
            __raw_writel(MICRON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0);
      }

      __raw_writel(SDP_SDRC_RFR_CTRL, SDRC_RFR_CTRL);
      __raw_writel(SDP_SDRC_POWER_POP, SDRC_POWER);

      /* init sequence for mDDR/mSDR using manual commands (DDR is different) */
      __raw_writel(CMD_NOP, SDRC_MANUAL_0);
      delay(5000);
      __raw_writel(CMD_PRECHARGE, SDRC_MANUAL_0);
      __raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0);
      __raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0);

      /* set mr0 */
      __raw_writel(SDP_SDRC_MR_0_DDR, SDRC_MR_0);

      /* set up dll */
      __raw_writel(SDP_SDRC_DLLAB_CTRL, SDRC_DLLA_CTRL);
      delay(0x2000);    /* give time to lock */

}
#endif /* CFG_3430SDRAM_DDR */

/*************************************************************
 * get_sys_clk_speed - determine reference oscillator speed
 *  based on known 32kHz clock and gptimer.
 *************************************************************/
u32 get_osc_clk_speed(void)
{
      u32 start, cstart, cend, cdiff, val;

      val = __raw_readl(PRM_CLKSRC_CTRL);
      /* If SYS_CLK is being divided by 2, remove for now */
      val = (val & (~BIT7)) | BIT6;
      __raw_writel(val, PRM_CLKSRC_CTRL);

      /* enable timer2 */
      val = __raw_readl(CM_CLKSEL_WKUP) | BIT0;
      __raw_writel(val, CM_CLKSEL_WKUP);  /* select sys_clk for GPT1 */

      /* Enable I and F Clocks for GPT1 */
      val = __raw_readl(CM_ICLKEN_WKUP) | BIT0 | BIT2;
      __raw_writel(val, CM_ICLKEN_WKUP);
      val = __raw_readl(CM_FCLKEN_WKUP) | BIT0;
      __raw_writel(val, CM_FCLKEN_WKUP);

      __raw_writel(0, OMAP34XX_GPT1 + TLDR);          /* start counting at 0 */
      __raw_writel(GPT_EN, OMAP34XX_GPT1 + TCLR);     /* enable clock */
      /* enable 32kHz source */
      /* enabled out of reset */
      /* determine sys_clk via gauging */

      start = 20 + __raw_readl(S32K_CR);  /* start time in 20 cycles */
      while (__raw_readl(S32K_CR) < start) ;    /* dead loop till start time */
      cstart = __raw_readl(OMAP34XX_GPT1 + TCRR);     /* get start sys_clk count */
      while (__raw_readl(S32K_CR) < (start + 20)) ;   /* wait for 40 cycles */
      cend = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get end sys_clk count */
      cdiff = cend - cstart;  /* get elapsed ticks */

      /* based on number of ticks assign speed */
      if (cdiff > 19000)
            return S38_4M;
      else if (cdiff > 15200)
            return S26M;
      else if (cdiff > 13000)
            return S24M;
      else if (cdiff > 9000)
            return S19_2M;
      else if (cdiff > 7600)
            return S13M;
      else
            return S12M;
}

/******************************************************************************
 * get_sys_clkin_sel() - returns the sys_clkin_sel field value based on
 *   -- input oscillator clock frequency.
 *
 *****************************************************************************/
void get_sys_clkin_sel(u32 osc_clk, u32 *sys_clkin_sel)
{
      if (osc_clk == S38_4M)
            *sys_clkin_sel = 4;
      else if (osc_clk == S26M)
            *sys_clkin_sel = 3;
      else if (osc_clk == S19_2M)
            *sys_clkin_sel = 2;
      else if (osc_clk == S13M)
            *sys_clkin_sel = 1;
      else if (osc_clk == S12M)
            *sys_clkin_sel = 0;
}

/******************************************************************************
 * prcm_init() - inits clocks for PRCM as defined in clocks.h
 *   -- called from SRAM, or Flash (using temp SRAM stack).
 *****************************************************************************/
void prcm_init(void)
{
      u32 osc_clk = 0, sys_clkin_sel;
      dpll_param *dpll_param_p;
      u32 clk_index, sil_index;

      /* Gauge the input clock speed and find out the sys_clkin_sel
       * value corresponding to the input clock.
       */
      osc_clk = get_osc_clk_speed();
      get_sys_clkin_sel(osc_clk, &sys_clkin_sel);

      sr32(PRM_CLKSEL, 0, 3, sys_clkin_sel);    /* set input crystal speed */

      /* If the input clock is greater than 19.2M always divide/2 */
      if (sys_clkin_sel > 2) {
            sr32(PRM_CLKSRC_CTRL, 6, 2, 2);     /* input clock divider */
            clk_index = sys_clkin_sel / 2;
      } else {
            sr32(PRM_CLKSRC_CTRL, 6, 2, 1);     /* input clock divider */
            clk_index = sys_clkin_sel;
      }

      sr32(PRM_CLKSRC_CTRL, 0, 2, 0);/* Bypass mode: T2 inputs a square clock */

      /* The DPLL tables are defined according to sysclk value and
       * silicon revision. The clk_index value will be used to get
       * the values for that input sysclk from the DPLL param table
       * and sil_index will get the values for that SysClk for the
       * appropriate silicon rev.
       */
      sil_index = get_cpu_rev() - 1;

      /* Unlock MPU DPLL (slows things down, and needed later) */
      sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOW_POWER_BYPASS);
      wait_on_value(BIT0, 0, CM_IDLEST_PLL_MPU, LDELAY);

      /* Getting the base address of Core DPLL param table */
      dpll_param_p = (dpll_param *) get_core_dpll_param();
      /* Moving it to the right sysclk and ES rev base */
      dpll_param_p = dpll_param_p + 3 * clk_index + sil_index;
      /* CORE DPLL */
      /* sr32(CM_CLKSEL2_EMU) set override to work when asleep */
      sr32(CM_CLKEN_PLL, 0, 3, PLL_FAST_RELOCK_BYPASS);
      wait_on_value(BIT0, 0, CM_IDLEST_CKGEN, LDELAY);

       /* For 3430 ES1.0 Errata 1.50, default value directly doesnt
      work. write another value and then default value. */
      sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2 + 1);     /* m3x2 */
      sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2);   /* m3x2 */
      sr32(CM_CLKSEL1_PLL, 27, 2, dpll_param_p->m2);  /* Set M2 */
      sr32(CM_CLKSEL1_PLL, 16, 11, dpll_param_p->m);  /* Set M */
      sr32(CM_CLKSEL1_PLL, 8, 7, dpll_param_p->n);    /* Set N */
      sr32(CM_CLKSEL1_PLL, 6, 1, 0);      /* 96M Src */
      sr32(CM_CLKSEL_CORE, 8, 4, CORE_SSI_DIV); /* ssi */
      sr32(CM_CLKSEL_CORE, 4, 2, CORE_FUSB_DIV);      /* fsusb */
      sr32(CM_CLKSEL_CORE, 2, 2, CORE_L4_DIV);  /* l4 */
      sr32(CM_CLKSEL_CORE, 0, 2, CORE_L3_DIV);  /* l3 */
      sr32(CM_CLKSEL_GFX, 0, 3, GFX_DIV); /* gfx */
      sr32(CM_CLKSEL_WKUP, 1, 2, WKUP_RSM);     /* reset mgr */
      sr32(CM_CLKEN_PLL, 4, 4, dpll_param_p->fsel);   /* FREQSEL */
      sr32(CM_CLKEN_PLL, 0, 3, PLL_LOCK); /* lock mode */
      wait_on_value(BIT0, 1, CM_IDLEST_CKGEN, LDELAY);

      /* Getting the base address to PER  DPLL param table */
      dpll_param_p = (dpll_param *) get_per_dpll_param();
      /* Moving it to the right sysclk base */
      dpll_param_p = dpll_param_p + clk_index;
      /* PER DPLL */
      sr32(CM_CLKEN_PLL, 16, 3, PLL_STOP);
      wait_on_value(BIT1, 0, CM_IDLEST_CKGEN, LDELAY);
      sr32(CM_CLKSEL1_EMU, 24, 5, PER_M6X2);    /* set M6 */
      sr32(CM_CLKSEL_CAM, 0, 5, PER_M5X2);      /* set M5 */
      sr32(CM_CLKSEL_DSS, 0, 5, PER_M4X2);      /* set M4 */
      sr32(CM_CLKSEL_DSS, 8, 5, PER_M3X2);      /* set M3 */
      sr32(CM_CLKSEL3_PLL, 0, 5, dpll_param_p->m2);   /* set M2 */
      sr32(CM_CLKSEL2_PLL, 8, 11, dpll_param_p->m);   /* set m */
      sr32(CM_CLKSEL2_PLL, 0, 7, dpll_param_p->n);    /* set n */
      sr32(CM_CLKEN_PLL, 20, 4, dpll_param_p->fsel);  /* FREQSEL */
      sr32(CM_CLKEN_PLL, 16, 3, PLL_LOCK);      /* lock mode */
      wait_on_value(BIT1, 2, CM_IDLEST_CKGEN, LDELAY);

      /* Getting the base address to MPU DPLL param table */
      dpll_param_p = (dpll_param *) get_mpu_dpll_param();

      /* Moving it to the right sysclk and ES rev base */
      dpll_param_p = dpll_param_p + 3 * clk_index + sil_index;

      /* MPU DPLL (unlocked already) */
      sr32(CM_CLKSEL2_PLL_MPU, 0, 5, dpll_param_p->m2);     /* Set M2 */
      sr32(CM_CLKSEL1_PLL_MPU, 8, 11, dpll_param_p->m);     /* Set M */
      sr32(CM_CLKSEL1_PLL_MPU, 0, 7, dpll_param_p->n);      /* Set N */
      sr32(CM_CLKEN_PLL_MPU, 4, 4, dpll_param_p->fsel);     /* FREQSEL */
      sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOCK);   /* lock mode */
      wait_on_value(BIT0, 1, CM_IDLEST_PLL_MPU, LDELAY);

      /* Getting the base address to IVA DPLL param table */
      dpll_param_p = (dpll_param *) get_iva_dpll_param();
      /* Moving it to the right sysclk and ES rev base */
      dpll_param_p = dpll_param_p + 3 * clk_index + sil_index;
      /* IVA DPLL (set to 12*20=240MHz) */
      sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_STOP);
      wait_on_value(BIT0, 0, CM_IDLEST_PLL_IVA2, LDELAY);
      sr32(CM_CLKSEL2_PLL_IVA2, 0, 5, dpll_param_p->m2);    /* set M2 */
      sr32(CM_CLKSEL1_PLL_IVA2, 8, 11, dpll_param_p->m);    /* set M */
      sr32(CM_CLKSEL1_PLL_IVA2, 0, 7, dpll_param_p->n);     /* set N */
      sr32(CM_CLKEN_PLL_IVA2, 4, 4, dpll_param_p->fsel);    /* FREQSEL */
      sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_LOCK);  /* lock mode */
      wait_on_value(BIT0, 1, CM_IDLEST_PLL_IVA2, LDELAY);

      /* Set up GPTimers to sys_clk source only */
      sr32(CM_CLKSEL_PER, 0, 8, 0xff);
      sr32(CM_CLKSEL_WKUP, 0, 1, 1);

      delay(5000);
}

/*****************************************
 * Routine: secure_unlock
 * Description: Setup security registers for access
 * (GP Device only)
 *****************************************/
void secure_unlock(void)
{
      /* Permission values for registers -Full fledged permissions to all */
#define UNLOCK_1 0xFFFFFFFF
#define UNLOCK_2 0x00000000
#define UNLOCK_3 0x0000FFFF
      /* Protection Module Register Target APE (PM_RT) */
      __raw_writel(UNLOCK_1, RT_REQ_INFO_PERMISSION_1);
      __raw_writel(UNLOCK_1, RT_READ_PERMISSION_0);
      __raw_writel(UNLOCK_1, RT_WRITE_PERMISSION_0);
      __raw_writel(UNLOCK_2, RT_ADDR_MATCH_1);

      __raw_writel(UNLOCK_3, GPMC_REQ_INFO_PERMISSION_0);
      __raw_writel(UNLOCK_3, GPMC_READ_PERMISSION_0);
      __raw_writel(UNLOCK_3, GPMC_WRITE_PERMISSION_0);

      __raw_writel(UNLOCK_3, OCM_REQ_INFO_PERMISSION_0);
      __raw_writel(UNLOCK_3, OCM_READ_PERMISSION_0);
      __raw_writel(UNLOCK_3, OCM_WRITE_PERMISSION_0);
      __raw_writel(UNLOCK_2, OCM_ADDR_MATCH_2);

      /* IVA Changes */
      __raw_writel(UNLOCK_3, IVA2_REQ_INFO_PERMISSION_0);
      __raw_writel(UNLOCK_3, IVA2_READ_PERMISSION_0);
      __raw_writel(UNLOCK_3, IVA2_WRITE_PERMISSION_0);

      __raw_writel(UNLOCK_1, SMS_RG_ATT0);      /* SDRC region 0 public */
}

/**********************************************************
 * Routine: try_unlock_sram()
 * Description: If chip is GP type, unlock the SRAM for
 *  general use.
 ***********************************************************/
void try_unlock_memory(void)
{
      int mode;

      /* if GP device unlock device SRAM for general use */
      /* secure code breaks for Secure/Emulation device - HS/E/T */
      mode = get_device_type();
      if (mode == GP_DEVICE)
            secure_unlock();
      return;
}

/**********************************************************
 * Routine: s_init
 * Description: Does early system init of muxing and clocks.
 * - Called at time when only stack is available.
 **********************************************************/

void s_init(void)
{
      watchdog_init();
#ifdef CONFIG_3430_AS_3410
      /* setup the scalability control register for
       * 3430 to work in 3410 mode
       */
      __raw_writel(0x5ABF, CONTROL_SCALABLE_OMAP_OCP);
#endif
      try_unlock_memory();
      set_muxconf_regs();
      delay(100);
      prcm_init();
      per_clocks_enable();
      config_3430sdram_ddr();
}

/*******************************************************
 * Routine: misc_init_r
 * Description: Init ethernet (done here so udelay works)
 ********************************************************/
int misc_init_r(void)
{
      return 0;
}

/******************************************************
 * Routine: wait_for_command_complete
 * Description: Wait for posting to finish on watchdog
 ******************************************************/
void wait_for_command_complete(unsigned int wd_base)
{
      int pending = 1;
      do {
            pending = __raw_readl(wd_base + WWPS);
      } while (pending);
}

/****************************************
 * Routine: watchdog_init
 * Description: Shut down watch dogs
 *****************************************/
void watchdog_init(void)
{
      /* There are 3 watch dogs WD1=Secure, WD2=MPU, WD3=IVA. WD1 is
       * either taken care of by ROM (HS/EMU) or not accessible (GP).
       * We need to take care of WD2-MPU or take a PRCM reset.  WD3
       * should not be running and does not generate a PRCM reset.
       */
      sr32(CM_FCLKEN_WKUP, 5, 1, 1);
      sr32(CM_ICLKEN_WKUP, 5, 1, 1);
      wait_on_value(BIT5, 0x20, CM_IDLEST_WKUP, 5);   /* some issue here */

      __raw_writel(WD_UNLOCK1, WD2_BASE + WSPR);
      wait_for_command_complete(WD2_BASE);
      __raw_writel(WD_UNLOCK2, WD2_BASE + WSPR);
}

/**********************************************
 * Routine: dram_init
 * Description: sets uboots idea of sdram size
 **********************************************/
int dram_init(void)
{
      return 0;
}

/*****************************************************************
 * Routine: peripheral_enable
 * Description: Enable the clks & power for perifs (GPT2, UART1,...)
 ******************************************************************/
void per_clocks_enable(void)
{
      /* Enable GP2 timer. */
      sr32(CM_CLKSEL_PER, 0, 1, 0x1);     /* GPT2 = sys clk */
      sr32(CM_ICLKEN_PER, 3, 1, 0x1);     /* ICKen GPT2 */
      sr32(CM_FCLKEN_PER, 3, 1, 0x1);     /* FCKen GPT2 */

#ifdef CFG_NS16550
      /* UART1 clocks */
      sr32(CM_FCLKEN1_CORE, 13, 1, 0x1);
      sr32(CM_ICLKEN1_CORE, 13, 1, 0x1);

      /* UART 3 Clocks */
      sr32(CM_FCLKEN_PER, 11, 1, 0x1);
      sr32(CM_ICLKEN_PER, 11, 1, 0x1);

#endif

#ifdef CONFIG_DRIVER_OMAP34XX_I2C
      /* Turn on all 3 I2C clocks */
      sr32(CM_FCLKEN1_CORE, 15, 3, 0x7);
      sr32(CM_ICLKEN1_CORE, 15, 3, 0x7);  /* I2C1,2,3 = on */
#endif

      /* Enable the ICLK for 32K Sync Timer as its used in udelay */
      sr32(CM_ICLKEN_WKUP, 2, 1, 0x1);

      sr32(CM_FCLKEN_IVA2, 0, 32, FCK_IVA2_ON);
      sr32(CM_FCLKEN1_CORE, 0, 32, FCK_CORE1_ON);
      sr32(CM_ICLKEN1_CORE, 0, 32, ICK_CORE1_ON);
      sr32(CM_ICLKEN2_CORE, 0, 32, ICK_CORE2_ON);
      sr32(CM_FCLKEN_WKUP, 0, 32, FCK_WKUP_ON);
      sr32(CM_ICLKEN_WKUP, 0, 32, ICK_WKUP_ON);
      sr32(CM_FCLKEN_DSS, 0, 32, FCK_DSS_ON);
      sr32(CM_ICLKEN_DSS, 0, 32, ICK_DSS_ON);
      sr32(CM_FCLKEN_CAM, 0, 32, FCK_CAM_ON);
      sr32(CM_ICLKEN_CAM, 0, 32, ICK_CAM_ON);
      sr32(CM_FCLKEN_PER, 0, 32, FCK_PER_ON);
      sr32(CM_ICLKEN_PER, 0, 32, ICK_PER_ON);

      /* Enable GPIO5 clocks for blinky LEDs */
      sr32(CM_FCLKEN_PER, 16, 1, 0x1);    /* FCKen GPIO5 */
      sr32(CM_ICLKEN_PER, 16, 1, 0x1);    /* ICKen GPIO5 */

      delay(1000);
}

/* Set MUX for UART, GPMC, SDRC, GPIO */

#define     MUX_VAL(OFFSET,VALUE)\
            __raw_writew((VALUE), OMAP34XX_CTRL_BASE + (OFFSET));

#define           CP(x) (CONTROL_PADCONF_##x)
/*
 * IEN  - Input Enable
 * IDIS - Input Disable
 * PTD  - Pull type Down
 * PTU  - Pull type Up
 * DIS  - Pull type selection is inactive
 * EN   - Pull type selection is active
 * M0   - Mode 0
 * The commented string gives the final mux configuration for that pin
 */
#define MUX_DEFAULT()\
      MUX_VAL(CP(SDRC_D0),        (IEN  | PTD | DIS | M0)) /*SDRC_D0*/\
      MUX_VAL(CP(SDRC_D1),        (IEN  | PTD | DIS | M0)) /*SDRC_D1*/\
      MUX_VAL(CP(SDRC_D2),        (IEN  | PTD | DIS | M0)) /*SDRC_D2*/\
      MUX_VAL(CP(SDRC_D3),        (IEN  | PTD | DIS | M0)) /*SDRC_D3*/\
      MUX_VAL(CP(SDRC_D4),        (IEN  | PTD | DIS | M0)) /*SDRC_D4*/\
      MUX_VAL(CP(SDRC_D5),        (IEN  | PTD | DIS | M0)) /*SDRC_D5*/\
      MUX_VAL(CP(SDRC_D6),        (IEN  | PTD | DIS | M0)) /*SDRC_D6*/\
      MUX_VAL(CP(SDRC_D7),        (IEN  | PTD | DIS | M0)) /*SDRC_D7*/\
      MUX_VAL(CP(SDRC_D8),        (IEN  | PTD | DIS | M0)) /*SDRC_D8*/\
      MUX_VAL(CP(SDRC_D9),        (IEN  | PTD | DIS | M0)) /*SDRC_D9*/\
      MUX_VAL(CP(SDRC_D10),       (IEN  | PTD | DIS | M0)) /*SDRC_D10*/\
      MUX_VAL(CP(SDRC_D11),       (IEN  | PTD | DIS | M0)) /*SDRC_D11*/\
      MUX_VAL(CP(SDRC_D12),       (IEN  | PTD | DIS | M0)) /*SDRC_D12*/\
      MUX_VAL(CP(SDRC_D13),       (IEN  | PTD | DIS | M0)) /*SDRC_D13*/\
      MUX_VAL(CP(SDRC_D14),       (IEN  | PTD | DIS | M0)) /*SDRC_D14*/\
      MUX_VAL(CP(SDRC_D15),       (IEN  | PTD | DIS | M0)) /*SDRC_D15*/\
      MUX_VAL(CP(SDRC_D16),       (IEN  | PTD | DIS | M0)) /*SDRC_D16*/\
      MUX_VAL(CP(SDRC_D17),       (IEN  | PTD | DIS | M0)) /*SDRC_D17*/\
      MUX_VAL(CP(SDRC_D18),       (IEN  | PTD | DIS | M0)) /*SDRC_D18*/\
      MUX_VAL(CP(SDRC_D19),       (IEN  | PTD | DIS | M0)) /*SDRC_D19*/\
      MUX_VAL(CP(SDRC_D20),       (IEN  | PTD | DIS | M0)) /*SDRC_D20*/\
      MUX_VAL(CP(SDRC_D21),       (IEN  | PTD | DIS | M0)) /*SDRC_D21*/\
      MUX_VAL(CP(SDRC_D22),       (IEN  | PTD | DIS | M0)) /*SDRC_D22*/\
      MUX_VAL(CP(SDRC_D23),       (IEN  | PTD | DIS | M0)) /*SDRC_D23*/\
      MUX_VAL(CP(SDRC_D24),       (IEN  | PTD | DIS | M0)) /*SDRC_D24*/\
      MUX_VAL(CP(SDRC_D25),       (IEN  | PTD | DIS | M0)) /*SDRC_D25*/\
      MUX_VAL(CP(SDRC_D26),       (IEN  | PTD | DIS | M0)) /*SDRC_D26*/\
      MUX_VAL(CP(SDRC_D27),       (IEN  | PTD | DIS | M0)) /*SDRC_D27*/\
      MUX_VAL(CP(SDRC_D28),       (IEN  | PTD | DIS | M0)) /*SDRC_D28*/\
      MUX_VAL(CP(SDRC_D29),       (IEN  | PTD | DIS | M0)) /*SDRC_D29*/\
      MUX_VAL(CP(SDRC_D30),       (IEN  | PTD | DIS | M0)) /*SDRC_D30*/\
      MUX_VAL(CP(SDRC_D31),       (IEN  | PTD | DIS | M0)) /*SDRC_D31*/\
      MUX_VAL(CP(SDRC_CLK),       (IEN  | PTD | DIS | M0)) /*SDRC_CLK*/\
      MUX_VAL(CP(SDRC_DQS0),      (IEN  | PTD | DIS | M0)) /*SDRC_DQS0*/\
      MUX_VAL(CP(SDRC_DQS1),      (IEN  | PTD | DIS | M0)) /*SDRC_DQS1*/\
      MUX_VAL(CP(SDRC_DQS2),      (IEN  | PTD | DIS | M0)) /*SDRC_DQS2*/\
      MUX_VAL(CP(SDRC_DQS3),      (IEN  | PTD | DIS | M0)) /*SDRC_DQS3*/\
      MUX_VAL(CP(GPMC_A1),        (IDIS | PTD | DIS | M0)) /*GPMC_A1*/\
      MUX_VAL(CP(GPMC_A2),        (IDIS | PTD | DIS | M0)) /*GPMC_A2*/\
      MUX_VAL(CP(GPMC_A3),        (IDIS | PTD | DIS | M0)) /*GPMC_A3*/\
      MUX_VAL(CP(GPMC_A4),        (IDIS | PTD | DIS | M0)) /*GPMC_A4*/\
      MUX_VAL(CP(GPMC_A5),        (IDIS | PTD | DIS | M0)) /*GPMC_A5*/\
      MUX_VAL(CP(GPMC_A6),        (IDIS | PTD | DIS | M0)) /*GPMC_A6*/\
      MUX_VAL(CP(GPMC_A7),        (IDIS | PTD | DIS | M0)) /*GPMC_A7*/\
      MUX_VAL(CP(GPMC_A8),        (IDIS | PTD | DIS | M0)) /*GPMC_A8*/\
      MUX_VAL(CP(GPMC_A9),        (IDIS | PTD | DIS | M0)) /*GPMC_A9*/\
      MUX_VAL(CP(GPMC_A10),       (IDIS | PTD | DIS | M0)) /*GPMC_A10*/\
      MUX_VAL(CP(GPMC_D0),        (IEN  | PTD | DIS | M0)) /*GPMC_D0*/\
      MUX_VAL(CP(GPMC_D1),        (IEN  | PTD | DIS | M0)) /*GPMC_D1*/\
      MUX_VAL(CP(GPMC_D2),        (IEN  | PTD | DIS | M0)) /*GPMC_D2*/\
      MUX_VAL(CP(GPMC_D3),        (IEN  | PTD | DIS | M0)) /*GPMC_D3*/\
      MUX_VAL(CP(GPMC_D4),        (IEN  | PTD | DIS | M0)) /*GPMC_D4*/\
      MUX_VAL(CP(GPMC_D5),        (IEN  | PTD | DIS | M0)) /*GPMC_D5*/\
      MUX_VAL(CP(GPMC_D6),        (IEN  | PTD | DIS | M0)) /*GPMC_D6*/\
      MUX_VAL(CP(GPMC_D7),        (IEN  | PTD | DIS | M0)) /*GPMC_D7*/\
      MUX_VAL(CP(GPMC_D8),        (IEN  | PTD | DIS | M0)) /*GPMC_D8*/\
      MUX_VAL(CP(GPMC_D9),        (IEN  | PTD | DIS | M0)) /*GPMC_D9*/\
      MUX_VAL(CP(GPMC_D10),       (IEN  | PTD | DIS | M0)) /*GPMC_D10*/\
      MUX_VAL(CP(GPMC_D11),       (IEN  | PTD | DIS | M0)) /*GPMC_D11*/\
      MUX_VAL(CP(GPMC_D12),       (IEN  | PTD | DIS | M0)) /*GPMC_D12*/\
      MUX_VAL(CP(GPMC_D13),       (IEN  | PTD | DIS | M0)) /*GPMC_D13*/\
      MUX_VAL(CP(GPMC_D14),       (IEN  | PTD | DIS | M0)) /*GPMC_D14*/\
      MUX_VAL(CP(GPMC_D15),       (IEN  | PTD | DIS | M0)) /*GPMC_D15*/\
      MUX_VAL(CP(GPMC_nCS0),      (IDIS | PTU | EN  | M0)) /*GPMC_nCS0*/\
      MUX_VAL(CP(GPMC_nCS1),      (IDIS | PTU | EN  | M0)) /*GPMC_nCS1*/\
      MUX_VAL(CP(GPMC_nCS2),      (IDIS | PTU | EN  | M0)) /*GPMC_nCS2*/\
      MUX_VAL(CP(GPMC_nCS3),      (IDIS | PTU | EN  | M0)) /*GPMC_nCS3*/\
      MUX_VAL(CP(GPMC_nCS4),      (IDIS | PTU | EN  | M0)) /*GPMC_nCS4*/\
      MUX_VAL(CP(GPMC_nCS5),      (IDIS | PTD | DIS | M0)) /*GPMC_nCS5*/\
      MUX_VAL(CP(GPMC_nCS6),      (IEN  | PTD | DIS | M1)) /*GPMC_nCS6*/\
      MUX_VAL(CP(GPMC_nCS7),      (IEN  | PTU | EN  | M1)) /*GPMC_nCS7*/\
      MUX_VAL(CP(GPMC_CLK),       (IDIS | PTD | DIS | M0)) /*GPMC_CLK*/\
      MUX_VAL(CP(GPMC_nADV_ALE),  (IDIS | PTD | DIS | M0)) /*GPMC_nADV_ALE*/\
      MUX_VAL(CP(GPMC_nOE),       (IDIS | PTD | DIS | M0)) /*GPMC_nOE*/\
      MUX_VAL(CP(GPMC_nWE),       (IDIS | PTD | DIS | M0)) /*GPMC_nWE*/\
      MUX_VAL(CP(GPMC_nBE0_CLE),  (IDIS | PTD | DIS | M0)) /*GPMC_nBE0_CLE*/\
      MUX_VAL(CP(GPMC_nBE1),      (IEN  | PTD | DIS | M0)) /*GPIO_61*/\
      MUX_VAL(CP(GPMC_nWP),       (IEN  | PTD | DIS | M0)) /*GPMC_nWP*/\
      MUX_VAL(CP(GPMC_WAIT0),     (IEN  | PTU | EN  | M0)) /*GPMC_WAIT0*/\
      MUX_VAL(CP(GPMC_WAIT1),     (IEN  | PTU | EN  | M0)) /*GPMC_WAIT1*/\
      MUX_VAL(CP(GPMC_WAIT2),     (IEN  | PTU | EN  | M0)) /*GPIO_64*/\
      MUX_VAL(CP(GPMC_WAIT3),     (IEN  | PTU | EN  | M0)) /*GPIO_65*/\
      MUX_VAL(CP(DSS_DATA18),     (IEN  | PTD | DIS | M4)) /*GPIO_88*/\
      MUX_VAL(CP(DSS_DATA19),     (IEN  | PTD | DIS | M4)) /*GPIO_89*/\
      MUX_VAL(CP(DSS_DATA20),     (IEN  | PTD | DIS | M4)) /*GPIO_90*/\
      MUX_VAL(CP(DSS_DATA21),     (IEN  | PTD | DIS | M4)) /*GPIO_91*/\
      MUX_VAL(CP(CAM_WEN),        (IEN  | PTD | DIS | M4)) /*GPIO_167*/\
      MUX_VAL(CP(MMC1_CLK),       (IDIS | PTU | EN  | M0)) /*MMC1_CLK*/\
      MUX_VAL(CP(MMC1_CMD),       (IEN  | PTU | EN  | M0)) /*MMC1_CMD*/\
      MUX_VAL(CP(MMC1_DAT0),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT0*/\
      MUX_VAL(CP(MMC1_DAT1),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT1*/\
      MUX_VAL(CP(MMC1_DAT2),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT2*/\
      MUX_VAL(CP(MMC1_DAT3),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT3*/\
      MUX_VAL(CP(MMC1_DAT4),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT4*/\
      MUX_VAL(CP(MMC1_DAT5),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT5*/\
      MUX_VAL(CP(MMC1_DAT6),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT6*/\
      MUX_VAL(CP(MMC1_DAT7),      (IEN  | PTU | EN  | M0)) /*MMC1_DAT7*/\
      MUX_VAL(CP(UART1_TX),       (IDIS | PTD | DIS | M0)) /*UART1_TX*/\
      MUX_VAL(CP(UART1_RTS),      (IDIS | PTD | DIS | M4)) /*GPIO_149*/\
      MUX_VAL(CP(UART1_CTS),      (IDIS | PTD | DIS | M4)) /*GPIO_150*/\
      MUX_VAL(CP(UART1_RX),       (IEN  | PTD | DIS | M0)) /*UART1_RX*/\
      MUX_VAL(CP(UART3_CTS_RCTX), (IEN  | PTD | EN  | M0)) /*UART3_CTS_RCTX */\
      MUX_VAL(CP(UART3_RTS_SD),   (IDIS | PTD | DIS | M0)) /*UART3_RTS_SD */\
      MUX_VAL(CP(UART3_RX_IRRX),  (IEN  | PTD | DIS | M0)) /*UART3_RX_IRRX*/\
      MUX_VAL(CP(UART3_TX_IRTX),  (IDIS | PTD | DIS | M0)) /*UART3_TX_IRTX*/\
      MUX_VAL(CP(I2C1_SCL),       (IEN  | PTU | EN  | M0)) /*I2C1_SCL*/\
      MUX_VAL(CP(I2C1_SDA),       (IEN  | PTU | EN  | M0)) /*I2C1_SDA*/\
      MUX_VAL(CP(I2C2_SCL),       (IEN  | PTU | EN  | M0)) /*I2C2_SCL*/\
      MUX_VAL(CP(I2C2_SDA),       (IEN  | PTU | EN  | M0)) /*I2C2_SDA*/\
      MUX_VAL(CP(I2C3_SCL),       (IEN  | PTU | EN  | M0)) /*I2C3_SCL*/\
      MUX_VAL(CP(I2C3_SDA),       (IEN  | PTU | EN  | M0)) /*I2C3_SDA*/\
      MUX_VAL(CP(I2C4_SCL),       (IEN  | PTU | EN  | M0)) /*I2C4_SCL*/\
      MUX_VAL(CP(I2C4_SDA),       (IEN  | PTU | EN  | M0)) /*I2C4_SDA*/\
      MUX_VAL(CP(McBSP1_DX),      (IEN  | PTD | DIS | M4)) /*GPIO_158*/\
      MUX_VAL(CP(SYS_32K),        (IEN  | PTD | DIS | M0)) /*SYS_32K*/\
      MUX_VAL(CP(SYS_BOOT0),      (IEN  | PTD | DIS | M4)) /*GPIO_2 */\
      MUX_VAL(CP(SYS_BOOT1),      (IEN  | PTD | DIS | M4)) /*GPIO_3 */\
      MUX_VAL(CP(SYS_BOOT2),      (IEN  | PTD | DIS | M4)) /*GPIO_4 */\
      MUX_VAL(CP(SYS_BOOT3),      (IEN  | PTD | DIS | M4)) /*GPIO_5 */\
      MUX_VAL(CP(SYS_BOOT4),      (IEN  | PTD | DIS | M4)) /*GPIO_6 */\
      MUX_VAL(CP(SYS_BOOT5),      (IEN  | PTD | DIS | M4)) /*GPIO_7 */\
      MUX_VAL(CP(SYS_BOOT6),      (IEN  | PTD | DIS | M4)) /*GPIO_8 */\
      MUX_VAL(CP(SYS_CLKOUT2),    (IEN  | PTU | EN  | M4)) /*GPIO_186*/\
      MUX_VAL(CP(JTAG_nTRST),     (IEN  | PTD | DIS | M0)) /*JTAG_nTRST*/\
      MUX_VAL(CP(JTAG_TCK),       (IEN  | PTD | DIS | M0)) /*JTAG_TCK*/\
      MUX_VAL(CP(JTAG_TMS),       (IEN  | PTD | DIS | M0)) /*JTAG_TMS*/\
      MUX_VAL(CP(JTAG_TDI),       (IEN  | PTD | DIS | M0)) /*JTAG_TDI*/\
      MUX_VAL(CP(JTAG_EMU0),      (IEN  | PTD | DIS | M0)) /*JTAG_EMU0*/\
      MUX_VAL(CP(JTAG_EMU1),      (IEN  | PTD | DIS | M0)) /*JTAG_EMU1*/\
      MUX_VAL(CP(ETK_CLK),        (IEN  | PTD | DIS | M4)) /*GPIO_12*/\
      MUX_VAL(CP(ETK_CTL),        (IEN  | PTD | DIS | M4)) /*GPIO_13*/\
      MUX_VAL(CP(ETK_D0),         (IEN  | PTD | DIS | M4)) /*GPIO_14*/\
      MUX_VAL(CP(ETK_D1),         (IEN  | PTD | DIS | M4)) /*GPIO_15*/\
      MUX_VAL(CP(ETK_D2),         (IEN  | PTD | DIS | M4)) /*GPIO_16*/\
      MUX_VAL(CP(ETK_D11),        (IEN  | PTD | DIS | M4)) /*GPIO_25*/\
      MUX_VAL(CP(ETK_D12),        (IEN  | PTD | DIS | M4)) /*GPIO_26*/\
      MUX_VAL(CP(ETK_D13),        (IEN  | PTD | DIS | M4)) /*GPIO_27*/\
      MUX_VAL(CP(ETK_D14),        (IEN  | PTD | DIS | M4)) /*GPIO_28*/\
      MUX_VAL(CP(ETK_D15),        (IEN  | PTD | DIS | M4)) /*GPIO_29 */\
      MUX_VAL(CP(sdrc_cke0),      (IDIS | PTU | EN  | M0)) /*sdrc_cke0 */\
      MUX_VAL(CP(sdrc_cke1),      (IDIS | PTD | DIS | M7)) /*sdrc_cke1 not used*/

/**********************************************************
 * Routine: set_muxconf_regs
 * Description: Setting up the configuration Mux registers
 *              specific to the hardware. Many pins need
 *              to be moved from protect to primary mode.
 *********************************************************/
void set_muxconf_regs(void)
{
      MUX_DEFAULT();
}

/**********************************************************
 * Routine: nand+_init
 * Description: Set up nand for nand and jffs2 commands
 *********************************************************/

int nand_init(void)
{
      /* global settings */
      __raw_writel(0x10, GPMC_SYSCONFIG); /* smart idle */
      __raw_writel(0x0, GPMC_IRQENABLE);  /* isr's sources masked */
      __raw_writel(0, GPMC_TIMEOUT_CONTROL);/* timeout disable */

      /* Set the GPMC Vals, NAND is mapped at CS0, oneNAND at CS0.
       *  We configure only GPMC CS0 with required values. Configiring other devices
       *  at other CS is done in u-boot. So we don't have to bother doing it here.
       */
      __raw_writel(0 , GPMC_CONFIG7 + GPMC_CONFIG_CS0);
      delay(1000);

      if ((get_mem_type() == GPMC_NAND) || (get_mem_type() == MMC_NAND)) {
            __raw_writel(M_NAND_GPMC_CONFIG1, GPMC_CONFIG1 + GPMC_CONFIG_CS0);
            __raw_writel(M_NAND_GPMC_CONFIG2, GPMC_CONFIG2 + GPMC_CONFIG_CS0);
            __raw_writel(M_NAND_GPMC_CONFIG3, GPMC_CONFIG3 + GPMC_CONFIG_CS0);
            __raw_writel(M_NAND_GPMC_CONFIG4, GPMC_CONFIG4 + GPMC_CONFIG_CS0);
            __raw_writel(M_NAND_GPMC_CONFIG5, GPMC_CONFIG5 + GPMC_CONFIG_CS0);
            __raw_writel(M_NAND_GPMC_CONFIG6, GPMC_CONFIG6 + GPMC_CONFIG_CS0);

            /* Enable the GPMC Mapping */
            __raw_writel((((OMAP34XX_GPMC_CS0_SIZE & 0xF)<<8) |
                       ((NAND_BASE_ADR>>24) & 0x3F) |
                       (1<<6)),  (GPMC_CONFIG7 + GPMC_CONFIG_CS0));
            delay(2000);

            if (nand_chip()) {
#ifdef CFG_PRINTF
                  printf("Unsupported Chip!\n");
#endif
                  return 1;
            }

      }

      if ((get_mem_type() == GPMC_ONENAND) || (get_mem_type() == MMC_ONENAND)) {
            __raw_writel(ONENAND_GPMC_CONFIG1, GPMC_CONFIG1 + GPMC_CONFIG_CS0);
            __raw_writel(ONENAND_GPMC_CONFIG2, GPMC_CONFIG2 + GPMC_CONFIG_CS0);
            __raw_writel(ONENAND_GPMC_CONFIG3, GPMC_CONFIG3 + GPMC_CONFIG_CS0);
            __raw_writel(ONENAND_GPMC_CONFIG4, GPMC_CONFIG4 + GPMC_CONFIG_CS0);
            __raw_writel(ONENAND_GPMC_CONFIG5, GPMC_CONFIG5 + GPMC_CONFIG_CS0);
            __raw_writel(ONENAND_GPMC_CONFIG6, GPMC_CONFIG6 + GPMC_CONFIG_CS0);

            /* Enable the GPMC Mapping */
            __raw_writel((((OMAP34XX_GPMC_CS0_SIZE & 0xF)<<8) |
                       ((ONENAND_BASE>>24) & 0x3F) |
                       (1<<6)),  (GPMC_CONFIG7 + GPMC_CONFIG_CS0));
            delay(2000);

            if (onenand_chip()) {
#ifdef CFG_PRINTF
                  printf("OneNAND Unsupported !\n");
#endif
                  return 1;
            }
      }
      return 0;
}

#define DEBUG_LED1                  149   /* gpio */
#define DEBUG_LED2                  150   /* gpio */

void blinkLEDs()
{
      void *p;

      /* Alternately turn the LEDs on and off */
      p = (unsigned long *)OMAP34XX_GPIO5_BASE;
      while (1) {
            /* turn LED1 on and LED2 off */
            *(unsigned long *)(p + 0x94) = 1 << (DEBUG_LED1 % 32);
            *(unsigned long *)(p + 0x90) = 1 << (DEBUG_LED2 % 32);

            /* delay for a while */
            delay(1000);

            /* turn LED1 off and LED2 on */
            *(unsigned long *)(p + 0x90) = 1 << (DEBUG_LED1 % 32);
            *(unsigned long *)(p + 0x94) = 1 << (DEBUG_LED2 % 32);

            /* delay for a while */
            delay(1000);
      }
}

/* optionally do something like blinking LED */
void board_hang(void)
{
      while (1)
            blinkLEDs();
}

/******************************************************************************
 * Dummy function to handle errors for EABI incompatibility
 *****************************************************************************/
void raise(void)
{
}

/******************************************************************************
 * Dummy function to handle errors for EABI incompatibility
 *****************************************************************************/
void abort(void)
{
}

Generated by  Doxygen 1.6.0   Back to index